Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods

C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.

Guardado en:
Detalles Bibliográficos
Autores principales: Tanglong Yuan, Nana Yan, Tianyi Fei, Jitan Zheng, Juan Meng, Nana Li, Jing Liu, Haihang Zhang, Long Xie, Wenqin Ying, Di Li, Lei Shi, Yongsen Sun, Yongyao Li, Yixue Li, Yidi Sun, Erwei Zuo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/84852509bdb0448faac72ae929a50ecc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:84852509bdb0448faac72ae929a50ecc
record_format dspace
spelling oai:doaj.org-article:84852509bdb0448faac72ae929a50ecc2021-12-02T16:27:55ZOptimization of C-to-G base editors with sequence context preference predictable by machine learning methods10.1038/s41467-021-25217-y2041-1723https://doaj.org/article/84852509bdb0448faac72ae929a50ecc2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25217-yhttps://doaj.org/toc/2041-1723C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.Tanglong YuanNana YanTianyi FeiJitan ZhengJuan MengNana LiJing LiuHaihang ZhangLong XieWenqin YingDi LiLei ShiYongsen SunYongyao LiYixue LiYidi SunErwei ZuoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tanglong Yuan
Nana Yan
Tianyi Fei
Jitan Zheng
Juan Meng
Nana Li
Jing Liu
Haihang Zhang
Long Xie
Wenqin Ying
Di Li
Lei Shi
Yongsen Sun
Yongyao Li
Yixue Li
Yidi Sun
Erwei Zuo
Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
description C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.
format article
author Tanglong Yuan
Nana Yan
Tianyi Fei
Jitan Zheng
Juan Meng
Nana Li
Jing Liu
Haihang Zhang
Long Xie
Wenqin Ying
Di Li
Lei Shi
Yongsen Sun
Yongyao Li
Yixue Li
Yidi Sun
Erwei Zuo
author_facet Tanglong Yuan
Nana Yan
Tianyi Fei
Jitan Zheng
Juan Meng
Nana Li
Jing Liu
Haihang Zhang
Long Xie
Wenqin Ying
Di Li
Lei Shi
Yongsen Sun
Yongyao Li
Yixue Li
Yidi Sun
Erwei Zuo
author_sort Tanglong Yuan
title Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
title_short Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
title_full Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
title_fullStr Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
title_full_unstemmed Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
title_sort optimization of c-to-g base editors with sequence context preference predictable by machine learning methods
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/84852509bdb0448faac72ae929a50ecc
work_keys_str_mv AT tanglongyuan optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT nanayan optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT tianyifei optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT jitanzheng optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT juanmeng optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT nanali optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT jingliu optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT haihangzhang optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT longxie optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT wenqinying optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT dili optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT leishi optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT yongsensun optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT yongyaoli optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT yixueli optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT yidisun optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
AT erweizuo optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods
_version_ 1718384000563675136