Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84852509bdb0448faac72ae929a50ecc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:84852509bdb0448faac72ae929a50ecc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:84852509bdb0448faac72ae929a50ecc2021-12-02T16:27:55ZOptimization of C-to-G base editors with sequence context preference predictable by machine learning methods10.1038/s41467-021-25217-y2041-1723https://doaj.org/article/84852509bdb0448faac72ae929a50ecc2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25217-yhttps://doaj.org/toc/2041-1723C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.Tanglong YuanNana YanTianyi FeiJitan ZhengJuan MengNana LiJing LiuHaihang ZhangLong XieWenqin YingDi LiLei ShiYongsen SunYongyao LiYixue LiYidi SunErwei ZuoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Tanglong Yuan Nana Yan Tianyi Fei Jitan Zheng Juan Meng Nana Li Jing Liu Haihang Zhang Long Xie Wenqin Ying Di Li Lei Shi Yongsen Sun Yongyao Li Yixue Li Yidi Sun Erwei Zuo Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods |
description |
C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context. |
format |
article |
author |
Tanglong Yuan Nana Yan Tianyi Fei Jitan Zheng Juan Meng Nana Li Jing Liu Haihang Zhang Long Xie Wenqin Ying Di Li Lei Shi Yongsen Sun Yongyao Li Yixue Li Yidi Sun Erwei Zuo |
author_facet |
Tanglong Yuan Nana Yan Tianyi Fei Jitan Zheng Juan Meng Nana Li Jing Liu Haihang Zhang Long Xie Wenqin Ying Di Li Lei Shi Yongsen Sun Yongyao Li Yixue Li Yidi Sun Erwei Zuo |
author_sort |
Tanglong Yuan |
title |
Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods |
title_short |
Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods |
title_full |
Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods |
title_fullStr |
Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods |
title_full_unstemmed |
Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods |
title_sort |
optimization of c-to-g base editors with sequence context preference predictable by machine learning methods |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/84852509bdb0448faac72ae929a50ecc |
work_keys_str_mv |
AT tanglongyuan optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT nanayan optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT tianyifei optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT jitanzheng optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT juanmeng optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT nanali optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT jingliu optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT haihangzhang optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT longxie optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT wenqinying optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT dili optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT leishi optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT yongsensun optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT yongyaoli optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT yixueli optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT yidisun optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods AT erweizuo optimizationofctogbaseeditorswithsequencecontextpreferencepredictablebymachinelearningmethods |
_version_ |
1718384000563675136 |