Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.
Guardado en:
Autores principales: | Tanglong Yuan, Nana Yan, Tianyi Fei, Jitan Zheng, Juan Meng, Nana Li, Jing Liu, Haihang Zhang, Long Xie, Wenqin Ying, Di Li, Lei Shi, Yongsen Sun, Yongyao Li, Yixue Li, Yidi Sun, Erwei Zuo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84852509bdb0448faac72ae929a50ecc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
BERTtoCNN: Similarity-preserving enhanced knowledge distillation for stance detection.
por: Yang Li, et al.
Publicado: (2021) -
The effect of anesthesia depth on radiofrequency catheter ablation of ventricular tachycardia: a retrospective study
por: Hongquan Dong, et al.
Publicado: (2021) -
Reconstruction of kidney renal clear cell carcinoma evolution across pathological stages
por: Shichao Pang, et al.
Publicado: (2018) -
Risk factors for the frequent attendance of older patients at community health service centers in China: a cross-sectional study based on stratified sampling
por: Nana Li, et al.
Publicado: (2021) -
Adult listening behaviour, music preferences and emotions in the mobile context. Does mobile context affect elicited emotions?
por: Rosa Angela Fabio, et al.
Publicado: (2019)