Fast and covariate-adaptive method amplifies detection power in large-scale multiple hypothesis testing

Side information in addition to the p-values is often available in modern applications of multiple hypothesis testing. Here, the authors develop AdaFDR, a new statistical method for multiple hypothesis testing that adaptively learns the decision threshold and amplifies the discovery power.

Guardado en:
Detalles Bibliográficos
Autores principales: Martin J. Zhang, Fei Xia, James Zou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/857c63f9248a49b7a4152050747075ac
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!