Fast and covariate-adaptive method amplifies detection power in large-scale multiple hypothesis testing
Side information in addition to the p-values is often available in modern applications of multiple hypothesis testing. Here, the authors develop AdaFDR, a new statistical method for multiple hypothesis testing that adaptively learns the decision threshold and amplifies the discovery power.
Guardado en:
Autores principales: | Martin J. Zhang, Fei Xia, James Zou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/857c63f9248a49b7a4152050747075ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction.
por: Otília Menyhart, et al.
Publicado: (2021) -
A Novel Approach for the Design of Fast-Settling Amplifiers for Biosignal Detection
por: Eduardo Alonso Rivas, et al.
Publicado: (2021) -
Fast and strong amplifiers of natural selection
por: Josef Tkadlec, et al.
Publicado: (2021) -
Dual-Mode Supply Modulator IC With an Adaptive Quiescent Current Controller for Its Linear Amplifier in LTE Mobile Power Amplifier
por: Hansik Oh, et al.
Publicado: (2021) -
An RF Stress-Based Thermal Shock Test Method for a CMOS Power Amplifier
por: Shaohua Zhou, et al.
Publicado: (2021)