RNA secondary structure prediction using deep learning with thermodynamic integration
Accurately predicting the secondary structure of non-coding RNAs can help unravel their function. Here the authors propose a method integrating thermodynamic information and deep learning to improve the robustness of RNA secondary structure prediction compared to several existing algorithms.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/862e961ec971484fbb3f7229d26241f6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:862e961ec971484fbb3f7229d26241f6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:862e961ec971484fbb3f7229d26241f62021-12-02T12:14:48ZRNA secondary structure prediction using deep learning with thermodynamic integration10.1038/s41467-021-21194-42041-1723https://doaj.org/article/862e961ec971484fbb3f7229d26241f62021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21194-4https://doaj.org/toc/2041-1723Accurately predicting the secondary structure of non-coding RNAs can help unravel their function. Here the authors propose a method integrating thermodynamic information and deep learning to improve the robustness of RNA secondary structure prediction compared to several existing algorithms.Kengo SatoManato AkiyamaYasubumi SakakibaraNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Kengo Sato Manato Akiyama Yasubumi Sakakibara RNA secondary structure prediction using deep learning with thermodynamic integration |
description |
Accurately predicting the secondary structure of non-coding RNAs can help unravel their function. Here the authors propose a method integrating thermodynamic information and deep learning to improve the robustness of RNA secondary structure prediction compared to several existing algorithms. |
format |
article |
author |
Kengo Sato Manato Akiyama Yasubumi Sakakibara |
author_facet |
Kengo Sato Manato Akiyama Yasubumi Sakakibara |
author_sort |
Kengo Sato |
title |
RNA secondary structure prediction using deep learning with thermodynamic integration |
title_short |
RNA secondary structure prediction using deep learning with thermodynamic integration |
title_full |
RNA secondary structure prediction using deep learning with thermodynamic integration |
title_fullStr |
RNA secondary structure prediction using deep learning with thermodynamic integration |
title_full_unstemmed |
RNA secondary structure prediction using deep learning with thermodynamic integration |
title_sort |
rna secondary structure prediction using deep learning with thermodynamic integration |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/862e961ec971484fbb3f7229d26241f6 |
work_keys_str_mv |
AT kengosato rnasecondarystructurepredictionusingdeeplearningwiththermodynamicintegration AT manatoakiyama rnasecondarystructurepredictionusingdeeplearningwiththermodynamicintegration AT yasubumisakakibara rnasecondarystructurepredictionusingdeeplearningwiththermodynamicintegration |
_version_ |
1718394584536449024 |