RNA secondary structure prediction using deep learning with thermodynamic integration

Accurately predicting the secondary structure of non-coding RNAs can help unravel their function. Here the authors propose a method integrating thermodynamic information and deep learning to improve the robustness of RNA secondary structure prediction compared to several existing algorithms.

Guardado en:
Detalles Bibliográficos
Autores principales: Kengo Sato, Manato Akiyama, Yasubumi Sakakibara
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/862e961ec971484fbb3f7229d26241f6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:862e961ec971484fbb3f7229d26241f6
record_format dspace
spelling oai:doaj.org-article:862e961ec971484fbb3f7229d26241f62021-12-02T12:14:48ZRNA secondary structure prediction using deep learning with thermodynamic integration10.1038/s41467-021-21194-42041-1723https://doaj.org/article/862e961ec971484fbb3f7229d26241f62021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21194-4https://doaj.org/toc/2041-1723Accurately predicting the secondary structure of non-coding RNAs can help unravel their function. Here the authors propose a method integrating thermodynamic information and deep learning to improve the robustness of RNA secondary structure prediction compared to several existing algorithms.Kengo SatoManato AkiyamaYasubumi SakakibaraNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Kengo Sato
Manato Akiyama
Yasubumi Sakakibara
RNA secondary structure prediction using deep learning with thermodynamic integration
description Accurately predicting the secondary structure of non-coding RNAs can help unravel their function. Here the authors propose a method integrating thermodynamic information and deep learning to improve the robustness of RNA secondary structure prediction compared to several existing algorithms.
format article
author Kengo Sato
Manato Akiyama
Yasubumi Sakakibara
author_facet Kengo Sato
Manato Akiyama
Yasubumi Sakakibara
author_sort Kengo Sato
title RNA secondary structure prediction using deep learning with thermodynamic integration
title_short RNA secondary structure prediction using deep learning with thermodynamic integration
title_full RNA secondary structure prediction using deep learning with thermodynamic integration
title_fullStr RNA secondary structure prediction using deep learning with thermodynamic integration
title_full_unstemmed RNA secondary structure prediction using deep learning with thermodynamic integration
title_sort rna secondary structure prediction using deep learning with thermodynamic integration
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/862e961ec971484fbb3f7229d26241f6
work_keys_str_mv AT kengosato rnasecondarystructurepredictionusingdeeplearningwiththermodynamicintegration
AT manatoakiyama rnasecondarystructurepredictionusingdeeplearningwiththermodynamicintegration
AT yasubumisakakibara rnasecondarystructurepredictionusingdeeplearningwiththermodynamicintegration
_version_ 1718394584536449024