Prediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (Arima) Box Jenkins dan Kalman Filter
Season changes conditions in Indonesia cause many disasters such as landslides, floods and whirlwinds and even hail. Extreme weather conditions that occur, it is better to remain alert to anticipate the various possibilities that occur and to reduce and minimize the impact that can harm the people....
Enregistré dans:
Auteurs principaux: | Nurissaidah Ulinnuha, Yuniar Farida |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/86d0b4772cc141d3a932e2cdccdd70d4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Prediksi Jumlah Kejadian Titik Api Melalui Pendekatan Deret Waktu Menggunakan Model Seasonal Arima
par: Muhammad Alkaff, et autres
Publié: (2019) -
Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA)
par: Deltha Airuzsh Lubis, et autres
Publié: (2017) -
Peramalan Kebutuhan Daya Listrik Menggunakan Model ARIMA dan Fungsi Transfer (Studi Kasus: PT. PLN (Persero) Area Sumbawa)
par: Mikhratunnisa Mikhratunnisa, et autres
Publié: (2018) -
FORECASTING SAVING DEPOSIT IN MALAYSIAN ISLAMIC BANKING: COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORK AND ARIMA
par: Raditya Sukmana, et autres
Publié: (2014) -
Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation
par: Ladislav Zjavka
Publié: (2021)