The equivalent parameter conditions for constructing multiple integral half-discrete Hilbert-type inequalities with a class of nonhomogeneous kernels and their applications

In this paper, we establish equivalent parameter conditions for the validity of multiple integral half-discrete Hilbert-type inequalities with the nonhomogeneous kernel G(nλ1∥x∥m,ρλ2)G\left({n}^{{\lambda }_{1}}\parallel x{\parallel }_{m,\rho }^{{\lambda }_{2}}\hspace{-0.16em}) (λ1λ2>0{\lambda }_{...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: He Bing, Hong Yong, Chen Qiang
Format: article
Langue:EN
Publié: De Gruyter 2021
Sujets:
Accès en ligne:https://doaj.org/article/88798f86fd4e4038bbd7f65d459cdb24
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:In this paper, we establish equivalent parameter conditions for the validity of multiple integral half-discrete Hilbert-type inequalities with the nonhomogeneous kernel G(nλ1∥x∥m,ρλ2)G\left({n}^{{\lambda }_{1}}\parallel x{\parallel }_{m,\rho }^{{\lambda }_{2}}\hspace{-0.16em}) (λ1λ2>0{\lambda }_{1}{\lambda }_{2}\gt 0) and obtain best constant factors of the inequalities in specific cases. In addition, we also discuss their applications in operator theory.