Steady increment of immature platelet fraction is suppressed by irradiation in single-donor platelet components during storage.
Circulating immature platelet fraction (IPF) reflects real-time thrombopoiesis and correlates with platelet recovery from thrombocytopenic presentations. To understand the dynamics of IPF in platelet transfusions, we quantified the %-IPF in single-donor platelet components (SDP) during prolonged sto...
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Public Library of Science (PLoS)
2014
|
Subjects: | |
Online Access: | https://doaj.org/article/88c16481ec8b4261a6dbd75d229d3cb3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Circulating immature platelet fraction (IPF) reflects real-time thrombopoiesis and correlates with platelet recovery from thrombocytopenic presentations. To understand the dynamics of IPF in platelet transfusions, we quantified the %-IPF in single-donor platelet components (SDP) during prolonged storage. %-IPF significantly increased from baseline by day 5 post-donation. Absolute IPF counts (A-IPC) had similar significant increments. However, gamma-irradiation suppressed the increments of %-IPF and A-IPC by >50%. Ultrastructural analysis of SDP units at day 10 showed well preserved morphology of immature platelets. Our findings suggest that IPF might actively expand ex-vivo and may have a longer shelf life than their mature counterparts. Closer study of IPF may be of critical clinical importance for transfusion practices. |
---|