Annotation-efficient deep learning for automatic medical image segmentation
Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, the authors introduce an open-source framework to handle imperfect training datasets.
Guardado en:
| Autores principales: | , , , , , , , , , , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Nature Portfolio
2021
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/89468834a479418fa700e90078bef195 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|