Annotation-efficient deep learning for automatic medical image segmentation
Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, the authors introduce an open-source framework to handle imperfect training datasets.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89468834a479418fa700e90078bef195 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:89468834a479418fa700e90078bef195 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:89468834a479418fa700e90078bef1952021-12-02T18:37:28ZAnnotation-efficient deep learning for automatic medical image segmentation10.1038/s41467-021-26216-92041-1723https://doaj.org/article/89468834a479418fa700e90078bef1952021-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26216-9https://doaj.org/toc/2041-1723Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, the authors introduce an open-source framework to handle imperfect training datasets.Shanshan WangCheng LiRongpin WangZaiyi LiuMeiyun WangHongna TanYaping WuXinfeng LiuHui SunRui YangXin LiuJie ChenHuihui ZhouIsmail Ben AyedHairong ZhengNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Shanshan Wang Cheng Li Rongpin Wang Zaiyi Liu Meiyun Wang Hongna Tan Yaping Wu Xinfeng Liu Hui Sun Rui Yang Xin Liu Jie Chen Huihui Zhou Ismail Ben Ayed Hairong Zheng Annotation-efficient deep learning for automatic medical image segmentation |
description |
Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, the authors introduce an open-source framework to handle imperfect training datasets. |
format |
article |
author |
Shanshan Wang Cheng Li Rongpin Wang Zaiyi Liu Meiyun Wang Hongna Tan Yaping Wu Xinfeng Liu Hui Sun Rui Yang Xin Liu Jie Chen Huihui Zhou Ismail Ben Ayed Hairong Zheng |
author_facet |
Shanshan Wang Cheng Li Rongpin Wang Zaiyi Liu Meiyun Wang Hongna Tan Yaping Wu Xinfeng Liu Hui Sun Rui Yang Xin Liu Jie Chen Huihui Zhou Ismail Ben Ayed Hairong Zheng |
author_sort |
Shanshan Wang |
title |
Annotation-efficient deep learning for automatic medical image segmentation |
title_short |
Annotation-efficient deep learning for automatic medical image segmentation |
title_full |
Annotation-efficient deep learning for automatic medical image segmentation |
title_fullStr |
Annotation-efficient deep learning for automatic medical image segmentation |
title_full_unstemmed |
Annotation-efficient deep learning for automatic medical image segmentation |
title_sort |
annotation-efficient deep learning for automatic medical image segmentation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/89468834a479418fa700e90078bef195 |
work_keys_str_mv |
AT shanshanwang annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT chengli annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT rongpinwang annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT zaiyiliu annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT meiyunwang annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT hongnatan annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT yapingwu annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT xinfengliu annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT huisun annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT ruiyang annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT xinliu annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT jiechen annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT huihuizhou annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT ismailbenayed annotationefficientdeeplearningforautomaticmedicalimagesegmentation AT hairongzheng annotationefficientdeeplearningforautomaticmedicalimagesegmentation |
_version_ |
1718377809415503872 |