Annotation-efficient deep learning for automatic medical image segmentation

Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, the authors introduce an open-source framework to handle imperfect training datasets.

Guardado en:
Detalles Bibliográficos
Autores principales: Shanshan Wang, Cheng Li, Rongpin Wang, Zaiyi Liu, Meiyun Wang, Hongna Tan, Yaping Wu, Xinfeng Liu, Hui Sun, Rui Yang, Xin Liu, Jie Chen, Huihui Zhou, Ismail Ben Ayed, Hairong Zheng
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/89468834a479418fa700e90078bef195
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:89468834a479418fa700e90078bef195
record_format dspace
spelling oai:doaj.org-article:89468834a479418fa700e90078bef1952021-12-02T18:37:28ZAnnotation-efficient deep learning for automatic medical image segmentation10.1038/s41467-021-26216-92041-1723https://doaj.org/article/89468834a479418fa700e90078bef1952021-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26216-9https://doaj.org/toc/2041-1723Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, the authors introduce an open-source framework to handle imperfect training datasets.Shanshan WangCheng LiRongpin WangZaiyi LiuMeiyun WangHongna TanYaping WuXinfeng LiuHui SunRui YangXin LiuJie ChenHuihui ZhouIsmail Ben AyedHairong ZhengNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shanshan Wang
Cheng Li
Rongpin Wang
Zaiyi Liu
Meiyun Wang
Hongna Tan
Yaping Wu
Xinfeng Liu
Hui Sun
Rui Yang
Xin Liu
Jie Chen
Huihui Zhou
Ismail Ben Ayed
Hairong Zheng
Annotation-efficient deep learning for automatic medical image segmentation
description Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, the authors introduce an open-source framework to handle imperfect training datasets.
format article
author Shanshan Wang
Cheng Li
Rongpin Wang
Zaiyi Liu
Meiyun Wang
Hongna Tan
Yaping Wu
Xinfeng Liu
Hui Sun
Rui Yang
Xin Liu
Jie Chen
Huihui Zhou
Ismail Ben Ayed
Hairong Zheng
author_facet Shanshan Wang
Cheng Li
Rongpin Wang
Zaiyi Liu
Meiyun Wang
Hongna Tan
Yaping Wu
Xinfeng Liu
Hui Sun
Rui Yang
Xin Liu
Jie Chen
Huihui Zhou
Ismail Ben Ayed
Hairong Zheng
author_sort Shanshan Wang
title Annotation-efficient deep learning for automatic medical image segmentation
title_short Annotation-efficient deep learning for automatic medical image segmentation
title_full Annotation-efficient deep learning for automatic medical image segmentation
title_fullStr Annotation-efficient deep learning for automatic medical image segmentation
title_full_unstemmed Annotation-efficient deep learning for automatic medical image segmentation
title_sort annotation-efficient deep learning for automatic medical image segmentation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/89468834a479418fa700e90078bef195
work_keys_str_mv AT shanshanwang annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT chengli annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT rongpinwang annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT zaiyiliu annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT meiyunwang annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT hongnatan annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT yapingwu annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT xinfengliu annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT huisun annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT ruiyang annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT xinliu annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT jiechen annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT huihuizhou annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT ismailbenayed annotationefficientdeeplearningforautomaticmedicalimagesegmentation
AT hairongzheng annotationefficientdeeplearningforautomaticmedicalimagesegmentation
_version_ 1718377809415503872