Annotation-efficient deep learning for automatic medical image segmentation
Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, the authors introduce an open-source framework to handle imperfect training datasets.
Guardado en:
Autores principales: | Shanshan Wang, Cheng Li, Rongpin Wang, Zaiyi Liu, Meiyun Wang, Hongna Tan, Yaping Wu, Xinfeng Liu, Hui Sun, Rui Yang, Xin Liu, Jie Chen, Huihui Zhou, Ismail Ben Ayed, Hairong Zheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/89468834a479418fa700e90078bef195 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Left circumflex artery pericardia fistula combined with huge pseudoaneurysm: a rare case report
por: Zhiyan Shen, et al.
Publicado: (2021) -
Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation
por: Ramla Bensaci, et al.
Publicado: (2021) -
Automatic segmentation tool for 3D digital rocks by deep learning
por: Johan Phan, et al.
Publicado: (2021) -
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
por: Jieming Li, et al.
Publicado: (2020)