DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
The analysis of NMR spectra of complex biochemical samples with respect to individual resonances is challenging but critically important. Here, the authors present a deep learning-based method that accelerates this process also for crowded NMR data that are non-trivial to analyze, even by expert NMR...
Enregistré dans:
Auteurs principaux: | Da-Wei Li, Alexandar L. Hansen, Chunhua Yuan, Lei Bruschweiler-Li, Rafael Brüschweiler |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8b2f9505fa2d4e0fac6a7c33108a2d80 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Order-disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase.
par: Mioara Larion, et autres
Publié: (2012) -
Deep neural networks for accurate predictions of crystal stability
par: Weike Ye, et autres
Publié: (2018) -
Deep convolutional neural networks for accurate somatic mutation detection
par: Sayed Mohammad Ebrahim Sahraeian, et autres
Publié: (2019) -
Deep generative neural network for accurate drug response imputation
par: Peilin Jia, et autres
Publié: (2021) -
DeepSleep convolutional neural network allows accurate and fast detection of sleep arousal
par: Hongyang Li, et autres
Publié: (2021)