Efficient modification of λ-DNA substrates for single-molecule studies

Abstract Single-molecule studies of protein-nucleic acid interactions frequently require site-specific modification of long DNA substrates. The bacteriophage λ is a convenient source of high quality long (48.5 kb) DNA. However, introducing specific sequences, tertiary structures, and chemical modifi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yoori Kim, Armando de la Torre, Andrew A. Leal, Ilya J. Finkelstein
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8b70cb40cf1a47ca9a485db753930e3d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8b70cb40cf1a47ca9a485db753930e3d
record_format dspace
spelling oai:doaj.org-article:8b70cb40cf1a47ca9a485db753930e3d2021-12-02T16:07:48ZEfficient modification of λ-DNA substrates for single-molecule studies10.1038/s41598-017-01984-x2045-2322https://doaj.org/article/8b70cb40cf1a47ca9a485db753930e3d2017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01984-xhttps://doaj.org/toc/2045-2322Abstract Single-molecule studies of protein-nucleic acid interactions frequently require site-specific modification of long DNA substrates. The bacteriophage λ is a convenient source of high quality long (48.5 kb) DNA. However, introducing specific sequences, tertiary structures, and chemical modifications into λ-DNA remains technically challenging. Most current approaches rely on multi-step ligations with low yields and incomplete products. Here, we describe a molecular toolkit for rapid preparation of modified λ-DNA. A set of PCR cassettes facilitates the introduction of recombinant DNA sequences into the λ-phage genome with 90–100% yield. Extrahelical structures and chemical modifications can be inserted at user-defined sites via an improved nicking enzyme-based strategy. As a proof-of-principle, we explore the interactions of S. cerevisiae Proliferating Cell Nuclear Antigen (yPCNA) with modified DNA sequences and structures incorporated within λ-DNA. Our results demonstrate that S. cerevisiae Replication Factor C (yRFC) can load yPCNA onto 5′-ssDNA flaps, (CAG)13 triplet repeats, and homoduplex DNA. However, yPCNA remains trapped on the (CAG)13 structure, confirming a proposed mechanism for triplet repeat expansion. We anticipate that this molecular toolbox will be broadly useful for other studies that require site-specific modification of long DNA substrates.Yoori KimArmando de la TorreAndrew A. LealIlya J. FinkelsteinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yoori Kim
Armando de la Torre
Andrew A. Leal
Ilya J. Finkelstein
Efficient modification of λ-DNA substrates for single-molecule studies
description Abstract Single-molecule studies of protein-nucleic acid interactions frequently require site-specific modification of long DNA substrates. The bacteriophage λ is a convenient source of high quality long (48.5 kb) DNA. However, introducing specific sequences, tertiary structures, and chemical modifications into λ-DNA remains technically challenging. Most current approaches rely on multi-step ligations with low yields and incomplete products. Here, we describe a molecular toolkit for rapid preparation of modified λ-DNA. A set of PCR cassettes facilitates the introduction of recombinant DNA sequences into the λ-phage genome with 90–100% yield. Extrahelical structures and chemical modifications can be inserted at user-defined sites via an improved nicking enzyme-based strategy. As a proof-of-principle, we explore the interactions of S. cerevisiae Proliferating Cell Nuclear Antigen (yPCNA) with modified DNA sequences and structures incorporated within λ-DNA. Our results demonstrate that S. cerevisiae Replication Factor C (yRFC) can load yPCNA onto 5′-ssDNA flaps, (CAG)13 triplet repeats, and homoduplex DNA. However, yPCNA remains trapped on the (CAG)13 structure, confirming a proposed mechanism for triplet repeat expansion. We anticipate that this molecular toolbox will be broadly useful for other studies that require site-specific modification of long DNA substrates.
format article
author Yoori Kim
Armando de la Torre
Andrew A. Leal
Ilya J. Finkelstein
author_facet Yoori Kim
Armando de la Torre
Andrew A. Leal
Ilya J. Finkelstein
author_sort Yoori Kim
title Efficient modification of λ-DNA substrates for single-molecule studies
title_short Efficient modification of λ-DNA substrates for single-molecule studies
title_full Efficient modification of λ-DNA substrates for single-molecule studies
title_fullStr Efficient modification of λ-DNA substrates for single-molecule studies
title_full_unstemmed Efficient modification of λ-DNA substrates for single-molecule studies
title_sort efficient modification of λ-dna substrates for single-molecule studies
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/8b70cb40cf1a47ca9a485db753930e3d
work_keys_str_mv AT yoorikim efficientmodificationofldnasubstratesforsinglemoleculestudies
AT armandodelatorre efficientmodificationofldnasubstratesforsinglemoleculestudies
AT andrewaleal efficientmodificationofldnasubstratesforsinglemoleculestudies
AT ilyajfinkelstein efficientmodificationofldnasubstratesforsinglemoleculestudies
_version_ 1718384728646615040