Efficient modification of λ-DNA substrates for single-molecule studies
Abstract Single-molecule studies of protein-nucleic acid interactions frequently require site-specific modification of long DNA substrates. The bacteriophage λ is a convenient source of high quality long (48.5 kb) DNA. However, introducing specific sequences, tertiary structures, and chemical modifi...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8b70cb40cf1a47ca9a485db753930e3d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8b70cb40cf1a47ca9a485db753930e3d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8b70cb40cf1a47ca9a485db753930e3d2021-12-02T16:07:48ZEfficient modification of λ-DNA substrates for single-molecule studies10.1038/s41598-017-01984-x2045-2322https://doaj.org/article/8b70cb40cf1a47ca9a485db753930e3d2017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01984-xhttps://doaj.org/toc/2045-2322Abstract Single-molecule studies of protein-nucleic acid interactions frequently require site-specific modification of long DNA substrates. The bacteriophage λ is a convenient source of high quality long (48.5 kb) DNA. However, introducing specific sequences, tertiary structures, and chemical modifications into λ-DNA remains technically challenging. Most current approaches rely on multi-step ligations with low yields and incomplete products. Here, we describe a molecular toolkit for rapid preparation of modified λ-DNA. A set of PCR cassettes facilitates the introduction of recombinant DNA sequences into the λ-phage genome with 90–100% yield. Extrahelical structures and chemical modifications can be inserted at user-defined sites via an improved nicking enzyme-based strategy. As a proof-of-principle, we explore the interactions of S. cerevisiae Proliferating Cell Nuclear Antigen (yPCNA) with modified DNA sequences and structures incorporated within λ-DNA. Our results demonstrate that S. cerevisiae Replication Factor C (yRFC) can load yPCNA onto 5′-ssDNA flaps, (CAG)13 triplet repeats, and homoduplex DNA. However, yPCNA remains trapped on the (CAG)13 structure, confirming a proposed mechanism for triplet repeat expansion. We anticipate that this molecular toolbox will be broadly useful for other studies that require site-specific modification of long DNA substrates.Yoori KimArmando de la TorreAndrew A. LealIlya J. FinkelsteinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yoori Kim Armando de la Torre Andrew A. Leal Ilya J. Finkelstein Efficient modification of λ-DNA substrates for single-molecule studies |
description |
Abstract Single-molecule studies of protein-nucleic acid interactions frequently require site-specific modification of long DNA substrates. The bacteriophage λ is a convenient source of high quality long (48.5 kb) DNA. However, introducing specific sequences, tertiary structures, and chemical modifications into λ-DNA remains technically challenging. Most current approaches rely on multi-step ligations with low yields and incomplete products. Here, we describe a molecular toolkit for rapid preparation of modified λ-DNA. A set of PCR cassettes facilitates the introduction of recombinant DNA sequences into the λ-phage genome with 90–100% yield. Extrahelical structures and chemical modifications can be inserted at user-defined sites via an improved nicking enzyme-based strategy. As a proof-of-principle, we explore the interactions of S. cerevisiae Proliferating Cell Nuclear Antigen (yPCNA) with modified DNA sequences and structures incorporated within λ-DNA. Our results demonstrate that S. cerevisiae Replication Factor C (yRFC) can load yPCNA onto 5′-ssDNA flaps, (CAG)13 triplet repeats, and homoduplex DNA. However, yPCNA remains trapped on the (CAG)13 structure, confirming a proposed mechanism for triplet repeat expansion. We anticipate that this molecular toolbox will be broadly useful for other studies that require site-specific modification of long DNA substrates. |
format |
article |
author |
Yoori Kim Armando de la Torre Andrew A. Leal Ilya J. Finkelstein |
author_facet |
Yoori Kim Armando de la Torre Andrew A. Leal Ilya J. Finkelstein |
author_sort |
Yoori Kim |
title |
Efficient modification of λ-DNA substrates for single-molecule studies |
title_short |
Efficient modification of λ-DNA substrates for single-molecule studies |
title_full |
Efficient modification of λ-DNA substrates for single-molecule studies |
title_fullStr |
Efficient modification of λ-DNA substrates for single-molecule studies |
title_full_unstemmed |
Efficient modification of λ-DNA substrates for single-molecule studies |
title_sort |
efficient modification of λ-dna substrates for single-molecule studies |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/8b70cb40cf1a47ca9a485db753930e3d |
work_keys_str_mv |
AT yoorikim efficientmodificationofldnasubstratesforsinglemoleculestudies AT armandodelatorre efficientmodificationofldnasubstratesforsinglemoleculestudies AT andrewaleal efficientmodificationofldnasubstratesforsinglemoleculestudies AT ilyajfinkelstein efficientmodificationofldnasubstratesforsinglemoleculestudies |
_version_ |
1718384728646615040 |