Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning.
<h4>Objective</h4>Liver cirrhosis is a leading cause of death and effects millions of people in the United States. Early mortality prediction among patients with cirrhosis might give healthcare providers more opportunity to effectively treat the condition. We hypothesized that laboratory...
Enregistré dans:
Auteurs principaux: | Aixia Guo, Nikhilesh R Mazumder, Daniela P Ladner, Randi E Foraker |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8be2fe0f334f46a7bcf30c01ab784a2d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records.
par: Aixia Guo, et autres
Publié: (2021) -
Predicting COVID-19 mortality with electronic medical records
par: Hossein Estiri, et autres
Publié: (2021) -
PNEUMONIA IN PATIENTS WITH LIVER CIRRHOSIS
par: R. V. Kazakova
Publié: (2013) -
Patterns of dendritic cell and monocyte subsets are associated with disease severity and mortality in liver cirrhosis patients
par: Chandra Chiappin Cardoso, et autres
Publié: (2021) -
Real-time prediction of COVID-19 related mortality using electronic health records
par: Patrick Schwab, et autres
Publié: (2021)