Continuous Human Activity Recognition through Parallelism LSTM with Multi-Frequency Spectrograms
According to the real-living environment, radar-based human activity recognition (HAR) is dedicated to recognizing and classifying a sequence of activities rather than individual activities, thereby drawing more attention in practical applications of security surveillance, health care and human–comp...
Enregistré dans:
Auteurs principaux: | Congzhang Ding, Yong Jia, Guolong Cui, Chuan Chen, Xiaoling Zhong, Yong Guo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8cfaa2c44fdd4ec3bf637f91d8ea5d7c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Generalized Spectrograms and t -Wigner Transforms
par: PAOLO,BOGGIATTO, et autres
Publié: (2010) -
A Novel Heterogeneous Parallel Convolution Bi-LSTM for Speech Emotion Recognition
par: Huiyun Zhang, et autres
Publié: (2021) -
Bird Species Identification Using Spectrogram Based on Multi-Channel Fusion of DCNNs
par: Feiyu Zhang, et autres
Publié: (2021) -
An Underwater Acoustic Target Recognition Method Based on Spectrograms with Different Resolutions
par: Xinwei Luo, et autres
Publié: (2021) -
Frog calling activity detection using lightweight CNN with multi-view spectrogram: A case study on Kroombit tinker frog
par: Jie Xie, et autres
Publié: (2022)