Air versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics
ABSTRACT The United States’ large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process. By USDA regulation, after harvest the internal temperature of the chicken must be reduced to 40°F or less within 16 ...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8d4f5c6cf4014279a2c81ce2b8209ccc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8d4f5c6cf4014279a2c81ce2b8209ccc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8d4f5c6cf4014279a2c81ce2b8209ccc2021-12-02T19:36:39ZAir versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics10.1128/mSystems.00912-202379-5077https://doaj.org/article/8d4f5c6cf4014279a2c81ce2b8209ccc2021-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00912-20https://doaj.org/toc/2379-5077ABSTRACT The United States’ large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process. By USDA regulation, after harvest the internal temperature of the chicken must be reduced to 40°F or less within 16 h to inhibit bacterial growth that would otherwise compromise the safety of the product. This step is accomplished most commonly by water immersion chilling in the United States, while air chilling methods dominate other global markets. A comprehensive understanding of the differences between these chilling methods is lacking. Therefore, we assessed the meat quality, shelf-life, microbial ecology, and techno-economic impacts of chilling methods on chicken broilers in a university meat laboratory setting. We discovered that air chilling methods resulted in superior chicken odor and shelf-life, especially prior to 14 days of dark storage. Moreover, we demonstrated that air chilling resulted in a more diverse microbiome that we hypothesize may delay the dominance of the spoilage organism Pseudomonas. Finally, a techno-economic analysis highlighted potential economic advantages to air chilling compared to water chilling in facility locations where water costs are a more significant factor than energy costs. IMPORTANCE As the poultry industry works to become more sustainable and to reduce the volume of food waste, it is critical to consider points in the processing system that can be altered to make the process more efficient. In this study, we demonstrate that the method used during chilling (air versus water chilling) influences the final product microbial community, quality, and physiochemistry. Notably, the use of air chilling appears to delay the bloom of Pseudomonas spp. that are the primary spoilers in packaged meat products. By using air chilling to reduce carcass temperatures instead of water chilling, producers may extend the time until spoilage of the products and, depending on the cost of water in the area, may have economic and sustainability advantages. As a next step, a similar experiment should be done in an industrial setting to confirm these results generated in a small-scale university lab facility.Aeriel D. BelkToni DuarteCasey QuinnDavid A. CoilKeith E. BelkJonathan A. EisenJason C. QuinnJennifer N. MartinXiang YangJessica L. MetcalfAmerican Society for Microbiologyarticlechickenmeatchilling methodsspoilageshelf life16S rRNA geneMicrobiologyQR1-502ENmSystems, Vol 6, Iss 2 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
chicken meat chilling methods spoilage shelf life 16S rRNA gene Microbiology QR1-502 |
spellingShingle |
chicken meat chilling methods spoilage shelf life 16S rRNA gene Microbiology QR1-502 Aeriel D. Belk Toni Duarte Casey Quinn David A. Coil Keith E. Belk Jonathan A. Eisen Jason C. Quinn Jennifer N. Martin Xiang Yang Jessica L. Metcalf Air versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics |
description |
ABSTRACT The United States’ large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process. By USDA regulation, after harvest the internal temperature of the chicken must be reduced to 40°F or less within 16 h to inhibit bacterial growth that would otherwise compromise the safety of the product. This step is accomplished most commonly by water immersion chilling in the United States, while air chilling methods dominate other global markets. A comprehensive understanding of the differences between these chilling methods is lacking. Therefore, we assessed the meat quality, shelf-life, microbial ecology, and techno-economic impacts of chilling methods on chicken broilers in a university meat laboratory setting. We discovered that air chilling methods resulted in superior chicken odor and shelf-life, especially prior to 14 days of dark storage. Moreover, we demonstrated that air chilling resulted in a more diverse microbiome that we hypothesize may delay the dominance of the spoilage organism Pseudomonas. Finally, a techno-economic analysis highlighted potential economic advantages to air chilling compared to water chilling in facility locations where water costs are a more significant factor than energy costs. IMPORTANCE As the poultry industry works to become more sustainable and to reduce the volume of food waste, it is critical to consider points in the processing system that can be altered to make the process more efficient. In this study, we demonstrate that the method used during chilling (air versus water chilling) influences the final product microbial community, quality, and physiochemistry. Notably, the use of air chilling appears to delay the bloom of Pseudomonas spp. that are the primary spoilers in packaged meat products. By using air chilling to reduce carcass temperatures instead of water chilling, producers may extend the time until spoilage of the products and, depending on the cost of water in the area, may have economic and sustainability advantages. As a next step, a similar experiment should be done in an industrial setting to confirm these results generated in a small-scale university lab facility. |
format |
article |
author |
Aeriel D. Belk Toni Duarte Casey Quinn David A. Coil Keith E. Belk Jonathan A. Eisen Jason C. Quinn Jennifer N. Martin Xiang Yang Jessica L. Metcalf |
author_facet |
Aeriel D. Belk Toni Duarte Casey Quinn David A. Coil Keith E. Belk Jonathan A. Eisen Jason C. Quinn Jennifer N. Martin Xiang Yang Jessica L. Metcalf |
author_sort |
Aeriel D. Belk |
title |
Air versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics |
title_short |
Air versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics |
title_full |
Air versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics |
title_fullStr |
Air versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics |
title_full_unstemmed |
Air versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics |
title_sort |
air versus water chilling of chicken: a pilot study of quality, shelf-life, microbial ecology, and economics |
publisher |
American Society for Microbiology |
publishDate |
2021 |
url |
https://doaj.org/article/8d4f5c6cf4014279a2c81ce2b8209ccc |
work_keys_str_mv |
AT aerieldbelk airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics AT toniduarte airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics AT caseyquinn airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics AT davidacoil airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics AT keithebelk airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics AT jonathanaeisen airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics AT jasoncquinn airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics AT jennifernmartin airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics AT xiangyang airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics AT jessicalmetcalf airversuswaterchillingofchickenapilotstudyofqualityshelflifemicrobialecologyandeconomics |
_version_ |
1718376337787322368 |