COVID-19 early detection for imbalanced or low number of data using a regularized cost-sensitive CapsNet
Abstract With the presence of novel coronavirus disease at the end of 2019, several approaches were proposed to help physicians detect the disease, such as using deep learning to recognize lung involvement based on the pattern of pneumonia. These approaches rely on analyzing the CT images and explor...
Enregistré dans:
Auteurs principaux: | Malihe Javidi, Saeid Abbaasi, Sara Naybandi Atashi, Mahdi Jampour |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8f3e7cd6f773442787fa54a3fb9ca5e0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Efficient-CapsNet: capsule network with self-attention routing
par: Vittorio Mazzia, et autres
Publié: (2021) -
Prediction of Peptide Detectability Based on CapsNet and Convolutional Block Attention Module
par: Minzhe Yu, et autres
Publié: (2021) -
A System for the Detection of Polyphonic Sound on a University Campus Based on CapsNet-RNN
par: Liyan Luo, et autres
Publié: (2021) -
Cost-Sensitive Self-Paced Learning With Adaptive Regularization for Classification of Image Time Series
par: Hao Li, et autres
Publié: (2021) -
MultiCapsNet: A General Framework for Data Integration and Interpretable Classification
par: Lifei Wang, et autres
Publié: (2021)