Hollow-tree super: A directional and scalable approach for feature importance in boosted tree models.

<h4>Purpose</h4>Current limitations in methodologies used throughout machine-learning to investigate feature importance in boosted tree modelling prevent the effective scaling to datasets with a large number of features, particularly when one is investigating both the magnitude and direc...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Stephane Doyen, Hugh Taylor, Peter Nicholas, Lewis Crawford, Isabella Young, Michael E Sughrue
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/8f5e5821182e4f03bbf2bbd5ff7ed511
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!