Hollow-tree super: A directional and scalable approach for feature importance in boosted tree models.
<h4>Purpose</h4>Current limitations in methodologies used throughout machine-learning to investigate feature importance in boosted tree modelling prevent the effective scaling to datasets with a large number of features, particularly when one is investigating both the magnitude and direc...
Guardado en:
Autores principales: | Stephane Doyen, Hugh Taylor, Peter Nicholas, Lewis Crawford, Isabella Young, Michael E Sughrue |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f5e5821182e4f03bbf2bbd5ff7ed511 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hollow-tree super: A directional and scalable approach for feature importance in boosted tree models
por: Stephane Doyen, et al.
Publicado: (2021) -
Artificial Flora Algorithm-Based Feature Selection with Gradient Boosted Tree Model for Diabetes Classification
por: P N, et al.
Publicado: (2021) -
iEnhancer-MFGBDT: Identifying enhancers and their strength by fusing multiple features and gradient boosting decision tree
por: Yunyun Liang, et al.
Publicado: (2021) -
Author Correction: Passive water ascent in a tall, scalable synthetic tree
por: Weiwei Shi, et al.
Publicado: (2021) -
Categorizing ideas about trees: a tree of trees.
por: Marie Fisler, et al.
Publicado: (2013)