A convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements
Ribozyme switches are a class of RNA-encoded genetic switch that support conditional regulation of gene expression across diverse organisms. An improved elucidation of the relationships between sequence, structure, and activity can improve our capacity for de novo rational design of ribozyme switche...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
eLife Sciences Publications Ltd
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/915fab600fbe453a9bab9db65ba07394 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:915fab600fbe453a9bab9db65ba07394 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:915fab600fbe453a9bab9db65ba073942021-11-23T13:02:42ZA convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements10.7554/eLife.596972050-084Xe59697https://doaj.org/article/915fab600fbe453a9bab9db65ba073942021-04-01T00:00:00Zhttps://elifesciences.org/articles/59697https://doaj.org/toc/2050-084XRibozyme switches are a class of RNA-encoded genetic switch that support conditional regulation of gene expression across diverse organisms. An improved elucidation of the relationships between sequence, structure, and activity can improve our capacity for de novo rational design of ribozyme switches. Here, we generated data on the activity of hundreds of thousands of ribozyme sequences. Using automated structural analysis and machine learning, we leveraged these large data sets to develop predictive models that estimate the in vivo gene-regulatory activity of a ribozyme sequence. These models supported the de novo design of ribozyme libraries with low mean basal gene-regulatory activities and new ribozyme switches that exhibit changes in gene-regulatory activity in the presence of a target ligand, producing functional switches for four out of five aptamers. Our work examines how biases in the model and the data set that affect prediction accuracy can arise and demonstrates that machine learning can be applied to RNA sequences to predict gene-regulatory activity, providing the basis for design tools for functional RNAs.Calvin M SchmidtChristina D SmolkeeLife Sciences Publications Ltdarticlesynthetic biologymachine learningRNA engineeringMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
synthetic biology machine learning RNA engineering Medicine R Science Q Biology (General) QH301-705.5 |
spellingShingle |
synthetic biology machine learning RNA engineering Medicine R Science Q Biology (General) QH301-705.5 Calvin M Schmidt Christina D Smolke A convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements |
description |
Ribozyme switches are a class of RNA-encoded genetic switch that support conditional regulation of gene expression across diverse organisms. An improved elucidation of the relationships between sequence, structure, and activity can improve our capacity for de novo rational design of ribozyme switches. Here, we generated data on the activity of hundreds of thousands of ribozyme sequences. Using automated structural analysis and machine learning, we leveraged these large data sets to develop predictive models that estimate the in vivo gene-regulatory activity of a ribozyme sequence. These models supported the de novo design of ribozyme libraries with low mean basal gene-regulatory activities and new ribozyme switches that exhibit changes in gene-regulatory activity in the presence of a target ligand, producing functional switches for four out of five aptamers. Our work examines how biases in the model and the data set that affect prediction accuracy can arise and demonstrates that machine learning can be applied to RNA sequences to predict gene-regulatory activity, providing the basis for design tools for functional RNAs. |
format |
article |
author |
Calvin M Schmidt Christina D Smolke |
author_facet |
Calvin M Schmidt Christina D Smolke |
author_sort |
Calvin M Schmidt |
title |
A convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements |
title_short |
A convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements |
title_full |
A convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements |
title_fullStr |
A convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements |
title_full_unstemmed |
A convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements |
title_sort |
convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements |
publisher |
eLife Sciences Publications Ltd |
publishDate |
2021 |
url |
https://doaj.org/article/915fab600fbe453a9bab9db65ba07394 |
work_keys_str_mv |
AT calvinmschmidt aconvolutionalneuralnetworkforthepredictionandforwarddesignofribozymebasedgenecontrolelements AT christinadsmolke aconvolutionalneuralnetworkforthepredictionandforwarddesignofribozymebasedgenecontrolelements AT calvinmschmidt convolutionalneuralnetworkforthepredictionandforwarddesignofribozymebasedgenecontrolelements AT christinadsmolke convolutionalneuralnetworkforthepredictionandforwarddesignofribozymebasedgenecontrolelements |
_version_ |
1718416717014630400 |