A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG.
Autism spectrum disorder (ASD) is a developmental disability characterized by persistent impairments in social interaction, speech and nonverbal communication, and restricted or repetitive behaviors. Currently Electroencephalography (EEG) is the most popular tool to inspect the existence of neurolog...
Enregistré dans:
Auteurs principaux: | Md Nurul Ahad Tawhid, Siuly Siuly, Hua Wang, Frank Whittaker, Kate Wang, Yanchun Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/91a6faa56c3240f9a3a067ee9e622690 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Automatic Detection of Atmospherics and Tweek Atmospherics in Radio Spectrograms Based on a Deep Learning Approach
par: Viera Maslej‐Krešňáková, et autres
Publié: (2021) -
EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach
par: William J. Bosl, et autres
Publié: (2018) -
Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: an EEG study.
par: Giulia Righi, et autres
Publié: (2014) -
Generalized Spectrograms and t -Wigner Transforms
par: PAOLO,BOGGIATTO, et autres
Publié: (2010) -
Prediction of autism spectrum disorder diagnosis using nonlinear measures of language-related EEG at 6 and 12 months
par: Fleming C. Peck, et autres
Publié: (2021)