Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias.
MAXENT is now a common species distribution modeling (SDM) tool used by conservation practitioners for predicting the distribution of a species from a set of records and environmental predictors. However, datasets of species occurrence used to train the model are often biased in the geographical spa...
Enregistré dans:
Auteurs principaux: | Yoan Fourcade, Jan O Engler, Dennis Rödder, Jean Secondi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2014
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/91bb1374b9de42a59b3c0cec141b3ed4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Effect of selection bias on two sample summary data based Mendelian randomization
par: Kai Wang, et autres
Publié: (2021) -
Exploiting collider bias to apply two-sample summary data Mendelian randomization methods to one-sample individual level data.
par: Ciarrah Barry, et autres
Publié: (2021) -
Sampling bias overestimates climate change impacts on forest growth in the southwestern United States
par: Stefan Klesse, et autres
Publié: (2018) -
Biased sequential sampling underlies the effects of time pressure and delay in social decision making
par: Fadong Chen, et autres
Publié: (2018) -
Bias correction capabilities of quantile mapping methods for rainfall and temperature variables
par: Maedeh Enayati, et autres
Publié: (2021)