Fusion of semantic and appearance features for loop‐closure detection in a dynamic environment
Abstract Loop‐closure detection is important in large‐scale localisation system. However, it is still difficult in a dynamic environment. An online fast loop‐closure detection algorithm based on Deeplabv3 with MobileNetV2 (DpMn2) as network backbone and local difference binary descriptor is proposed...
Guardado en:
Autores principales: | Yan Xu, Jiani Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91e8951d056d47b99ba61deb0c0e8171 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Notice of Violation of IEEE Publication Principles: Ground-Based Cloud Image Recognition System Based on Multi-CNN and Feature Screening and Fusion
por: Ma Jingyi, et al.
Publicado: (2020) -
Feature fusion for inverse synthetic aperture radar image classification via learning shared hidden space
por: Wenhao Lin, et al.
Publicado: (2021) -
Enhancing semantics with multi‐objective reinforcement learning for video description
por: Qinyu Li, et al.
Publicado: (2021) -
Multi‐view facial action unit detection via deep feature enhancement
por: Chuangao Tang, et al.
Publicado: (2021) -
A two‐turn loop active magnetic field probe design for high sensitivity near‐field measurement
por: Weiheng Shao, et al.
Publicado: (2022)