Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors.
As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ,...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9250f83d504e40b6929ec9013fde4d17 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9250f83d504e40b6929ec9013fde4d17 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9250f83d504e40b6929ec9013fde4d172021-11-18T08:10:22ZScaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors.1932-620310.1371/journal.pone.0048453https://doaj.org/article/9250f83d504e40b6929ec9013fde4d172012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23119024/?tool=EBIhttps://doaj.org/toc/1932-6203As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARβ/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARβ and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARβ and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME) predictions showed that the 7 compounds (especially Cpd#1) hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes.Li-Song ZhangShu-Qing WangWei-Ren XuRun-Ling WangJing-Fang WangPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 10, p e48453 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Li-Song Zhang Shu-Qing Wang Wei-Ren Xu Run-Ling Wang Jing-Fang Wang Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors. |
description |
As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARβ/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARβ and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARβ and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME) predictions showed that the 7 compounds (especially Cpd#1) hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes. |
format |
article |
author |
Li-Song Zhang Shu-Qing Wang Wei-Ren Xu Run-Ling Wang Jing-Fang Wang |
author_facet |
Li-Song Zhang Shu-Qing Wang Wei-Ren Xu Run-Ling Wang Jing-Fang Wang |
author_sort |
Li-Song Zhang |
title |
Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors. |
title_short |
Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors. |
title_full |
Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors. |
title_fullStr |
Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors. |
title_full_unstemmed |
Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors. |
title_sort |
scaffold-based pan-agonist design for the pparα, pparβ and pparγ receptors. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/9250f83d504e40b6929ec9013fde4d17 |
work_keys_str_mv |
AT lisongzhang scaffoldbasedpanagonistdesignforthepparapparbandppargreceptors AT shuqingwang scaffoldbasedpanagonistdesignforthepparapparbandppargreceptors AT weirenxu scaffoldbasedpanagonistdesignforthepparapparbandppargreceptors AT runlingwang scaffoldbasedpanagonistdesignforthepparapparbandppargreceptors AT jingfangwang scaffoldbasedpanagonistdesignforthepparapparbandppargreceptors |
_version_ |
1718422122352607232 |