Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders
Abstract In the United States, approximately 7000 rare diseases affect 30 million patients, and only 10% of these diseases have existing therapies. Sound study design and causal inference methods are essential to demonstrate the therapeutic efficacy, safety, and effectiveness of new therapies. In th...
Guardado en:
Autores principales: | Rima Izem, Robert McCarter |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9253ab0790f24de99be7790223c1c8ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Longitudinal data analysis for rare variants detection with penalized quadratic inference function
por: Hongyan Cao, et al.
Publicado: (2017) - Journal of causal inference
-
Fast and effective pseudo transfer entropy for bivariate data-driven causal inference
por: Riccardo Silini, et al.
Publicado: (2021) -
Inference of causal networks from time-varying transcriptome data via sparse coding.
por: Kai Zhang, et al.
Publicado: (2012) -
Causal associations between risk factors and common diseases inferred from GWAS summary data
por: Zhihong Zhu, et al.
Publicado: (2018)