Identifying Engineering Undergraduates’ Learning Style Profiles Using Machine Learning Techniques
In a hybrid university learning environment, the rapid identification of students’ learning styles seems to be essential to achieve complementarity between conventional face-to-face pedagogical strategies and the application of new strategies using virtual technologies. In this context, this researc...
Guardado en:
Autores principales: | Patricio Ramírez-Correa, Jorge Alfaro-Pérez, Mauricio Gallardo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9350b4dff25e4debb1feab104630de0b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Selection of the Right Undergraduate Major by Students Using Supervised Learning Techniques
por: Alhuseen Omar Alsayed, et al.
Publicado: (2021) -
A post COVID Machine Learning approach in Teaching and Learning methodology to alleviate drawbacks of the e-whiteboards
por: Sudan Jha, et al.
Publicado: (2021) -
Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities, and Threats
por: Maarten R. Dobbelaere, et al.
Publicado: (2021) -
INVESTIGATING SECONDARY SCHOOL STUDENTS’ LEARNING STYLES ACCORDING TO DEMOGRAPHIC VARIABLES
por: Özden TEZEL
Publicado: (2019) -
Vocational Student's Attitude and Response Towards Experiential Learning in Mechanical Engineering
por: Fajar Pamungkas Stephanus, et al.
Publicado: (2021)