Approximate Bayesian computation.
Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model,...
Enregistré dans:
| Auteurs principaux: | Mikael Sunnåker, Alberto Giovanni Busetto, Elina Numminen, Jukka Corander, Matthieu Foll, Christophe Dessimoz |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Public Library of Science (PLoS)
2013
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/9376965912b5427199a2a3385b7ddec0 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Using approximate Bayesian computation to quantify cell–cell adhesion parameters in a cell migratory process
par: Robert J. H. Ross, et autres
Publié: (2017) -
A mixture of delta-rules approximation to bayesian inference in change-point problems.
par: Robert C Wilson, et autres
Publié: (2013) -
Identifying currents in the gene pool for bacterial populations using an integrative approach.
par: Jing Tang, et autres
Publié: (2009) -
Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
par: Bernhard Nessler, et autres
Publié: (2013) -
Human visual search follows a suboptimal Bayesian strategy revealed by a spatiotemporal computational model and experiment
par: Yunhui Zhou, et autres
Publié: (2021)