Approximate Bayesian computation.
Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model,...
Guardado en:
Autores principales: | Mikael Sunnåker, Alberto Giovanni Busetto, Elina Numminen, Jukka Corander, Matthieu Foll, Christophe Dessimoz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9376965912b5427199a2a3385b7ddec0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using approximate Bayesian computation to quantify cell–cell adhesion parameters in a cell migratory process
por: Robert J. H. Ross, et al.
Publicado: (2017) -
A mixture of delta-rules approximation to bayesian inference in change-point problems.
por: Robert C Wilson, et al.
Publicado: (2013) -
Identifying currents in the gene pool for bacterial populations using an integrative approach.
por: Jing Tang, et al.
Publicado: (2009) -
Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
por: Bernhard Nessler, et al.
Publicado: (2013) -
Human visual search follows a suboptimal Bayesian strategy revealed by a spatiotemporal computational model and experiment
por: Yunhui Zhou, et al.
Publicado: (2021)