Epidemic spreading in modular time-varying networks
Abstract We investigate the effects of modular and temporal connectivity patterns on epidemic spreading. To this end, we introduce and analytically characterise a model of time-varying networks with tunable modularity. Within this framework, we study the epidemic size of Susceptible-Infected-Recover...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2018
|
Subjects: | |
Online Access: | https://doaj.org/article/93efcf7dbfa34ed2b3c4c0d43b6f407f |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We investigate the effects of modular and temporal connectivity patterns on epidemic spreading. To this end, we introduce and analytically characterise a model of time-varying networks with tunable modularity. Within this framework, we study the epidemic size of Susceptible-Infected-Recovered, SIR, models and the epidemic threshold of Susceptible-Infected-Susceptible, SIS, models. Interestingly, we find that while the presence of tightly connected clusters inhibits SIR processes, it speeds up SIS phenomena. In this case, we observe that modular structures induce a reduction of the threshold with respect to time-varying networks without communities. We confirm the theoretical results by means of extensive numerical simulations both on synthetic graphs as well as on a real modular and temporal network. |
---|