Graphene-based 3D XNOR-VRRAM with ternary precision for neuromorphic computing
Abstract Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. I...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9403e82d0eff4fdfb77920892c449198 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|