Graphene-based 3D XNOR-VRRAM with ternary precision for neuromorphic computing

Abstract Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. I...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Batyrbek Alimkhanuly, Joon Sohn, Ik-Joon Chang, Seunghyun Lee
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/9403e82d0eff4fdfb77920892c449198
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!