Graphene-based 3D XNOR-VRRAM with ternary precision for neuromorphic computing

Abstract Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. I...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Batyrbek Alimkhanuly, Joon Sohn, Ik-Joon Chang, Seunghyun Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/9403e82d0eff4fdfb77920892c449198
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares