Graphene-based 3D XNOR-VRRAM with ternary precision for neuromorphic computing
Abstract Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. I...
Guardado en:
Autores principales: | Batyrbek Alimkhanuly, Joon Sohn, Ik-Joon Chang, Seunghyun Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9403e82d0eff4fdfb77920892c449198 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons
por: Junichi Yamaguchi, et al.
Publicado: (2020) -
Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing
por: Sifan Li, et al.
Publicado: (2021) -
Author Correction: Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons
por: Junichi Yamaguchi, et al.
Publicado: (2020) -
Corrosion of ternary borosilicate glass in acidic solution studied in operando by fluid-cell Raman spectroscopy
por: Christoph Lenting, et al.
Publicado: (2021) -
Flexible and high precision thermal metasurface
por: Jiyao Wang, et al.
Publicado: (2021)