Accurate deep neural network inference using computational phase-change memory
Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change...
Enregistré dans:
Auteurs principaux: | , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|