Accurate deep neural network inference using computational phase-change memory

Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, S. R. Nandakumar, Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, Evangelos Eleftheriou
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!