Accurate deep neural network inference using computational phase-change memory

Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, S. R. Nandakumar, Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, Evangelos Eleftheriou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory.