Accurate deep neural network inference using computational phase-change memory
Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9493f30e46f1467787cb2f92f01d219f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9493f30e46f1467787cb2f92f01d219f2021-12-02T16:51:35ZAccurate deep neural network inference using computational phase-change memory10.1038/s41467-020-16108-92041-1723https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f2020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16108-9https://doaj.org/toc/2041-1723Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory.Vinay JoshiManuel Le GalloSimon HaefeliIrem BoybatS. R. NandakumarChristophe PiveteauMartino DazziBipin RajendranAbu SebastianEvangelos EleftheriouNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Vinay Joshi Manuel Le Gallo Simon Haefeli Irem Boybat S. R. Nandakumar Christophe Piveteau Martino Dazzi Bipin Rajendran Abu Sebastian Evangelos Eleftheriou Accurate deep neural network inference using computational phase-change memory |
description |
Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory. |
format |
article |
author |
Vinay Joshi Manuel Le Gallo Simon Haefeli Irem Boybat S. R. Nandakumar Christophe Piveteau Martino Dazzi Bipin Rajendran Abu Sebastian Evangelos Eleftheriou |
author_facet |
Vinay Joshi Manuel Le Gallo Simon Haefeli Irem Boybat S. R. Nandakumar Christophe Piveteau Martino Dazzi Bipin Rajendran Abu Sebastian Evangelos Eleftheriou |
author_sort |
Vinay Joshi |
title |
Accurate deep neural network inference using computational phase-change memory |
title_short |
Accurate deep neural network inference using computational phase-change memory |
title_full |
Accurate deep neural network inference using computational phase-change memory |
title_fullStr |
Accurate deep neural network inference using computational phase-change memory |
title_full_unstemmed |
Accurate deep neural network inference using computational phase-change memory |
title_sort |
accurate deep neural network inference using computational phase-change memory |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f |
work_keys_str_mv |
AT vinayjoshi accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory AT manuellegallo accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory AT simonhaefeli accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory AT iremboybat accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory AT srnandakumar accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory AT christophepiveteau accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory AT martinodazzi accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory AT bipinrajendran accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory AT abusebastian accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory AT evangeloseleftheriou accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory |
_version_ |
1718382933810610176 |