Accurate deep neural network inference using computational phase-change memory

Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, S. R. Nandakumar, Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, Evangelos Eleftheriou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9493f30e46f1467787cb2f92f01d219f
record_format dspace
spelling oai:doaj.org-article:9493f30e46f1467787cb2f92f01d219f2021-12-02T16:51:35ZAccurate deep neural network inference using computational phase-change memory10.1038/s41467-020-16108-92041-1723https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f2020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16108-9https://doaj.org/toc/2041-1723Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory.Vinay JoshiManuel Le GalloSimon HaefeliIrem BoybatS. R. NandakumarChristophe PiveteauMartino DazziBipin RajendranAbu SebastianEvangelos EleftheriouNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Vinay Joshi
Manuel Le Gallo
Simon Haefeli
Irem Boybat
S. R. Nandakumar
Christophe Piveteau
Martino Dazzi
Bipin Rajendran
Abu Sebastian
Evangelos Eleftheriou
Accurate deep neural network inference using computational phase-change memory
description Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory.
format article
author Vinay Joshi
Manuel Le Gallo
Simon Haefeli
Irem Boybat
S. R. Nandakumar
Christophe Piveteau
Martino Dazzi
Bipin Rajendran
Abu Sebastian
Evangelos Eleftheriou
author_facet Vinay Joshi
Manuel Le Gallo
Simon Haefeli
Irem Boybat
S. R. Nandakumar
Christophe Piveteau
Martino Dazzi
Bipin Rajendran
Abu Sebastian
Evangelos Eleftheriou
author_sort Vinay Joshi
title Accurate deep neural network inference using computational phase-change memory
title_short Accurate deep neural network inference using computational phase-change memory
title_full Accurate deep neural network inference using computational phase-change memory
title_fullStr Accurate deep neural network inference using computational phase-change memory
title_full_unstemmed Accurate deep neural network inference using computational phase-change memory
title_sort accurate deep neural network inference using computational phase-change memory
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f
work_keys_str_mv AT vinayjoshi accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
AT manuellegallo accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
AT simonhaefeli accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
AT iremboybat accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
AT srnandakumar accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
AT christophepiveteau accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
AT martinodazzi accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
AT bipinrajendran accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
AT abusebastian accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
AT evangeloseleftheriou accuratedeepneuralnetworkinferenceusingcomputationalphasechangememory
_version_ 1718382933810610176