Accurate deep neural network inference using computational phase-change memory
Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | article |
| Language: | EN |
| Published: |
Nature Portfolio
2020
|
| Subjects: | |
| Online Access: | https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|