Accurate deep neural network inference using computational phase-change memory
Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change...
Guardado en:
Autores principales: | Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, S. R. Nandakumar, Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, Evangelos Eleftheriou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018) -
Temporal correlation detection using computational phase-change memory
por: Abu Sebastian, et al.
Publicado: (2017) -
Deep neural networks for accurate predictions of crystal stability
por: Weike Ye, et al.
Publicado: (2018) -
Robust high-dimensional memory-augmented neural networks
por: Geethan Karunaratne, et al.
Publicado: (2021) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sayed Mohammad Ebrahim Sahraeian, et al.
Publicado: (2019)