Accurate deep neural network inference using computational phase-change memory

Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change...

Full description

Saved in:
Bibliographic Details
Main Authors: Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, S. R. Nandakumar, Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, Evangelos Eleftheriou
Format: article
Language:EN
Published: Nature Portfolio 2020
Subjects:
Q
Online Access:https://doaj.org/article/9493f30e46f1467787cb2f92f01d219f
Tags: Add Tag
No Tags, Be the first to tag this record!