An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations

In standard computing architectures, memory and logic circuits are separated, a feature that slows matrix operations vital to deep learning algorithms. Here, the authors present an alternate in-memory architecture and demonstrate a feasible approach for analog matrix multiplication.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Yin Wang, Hongwei Tang, Yufeng Xie, Xinyu Chen, Shunli Ma, Zhengzong Sun, Qingqing Sun, Lin Chen, Hao Zhu, Jing Wan, Zihan Xu, David Wei Zhang, Peng Zhou, Wenzhong Bao
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/95c950a5eea5402c9ba88b7eef5a5b8c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!