An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations
In standard computing architectures, memory and logic circuits are separated, a feature that slows matrix operations vital to deep learning algorithms. Here, the authors present an alternate in-memory architecture and demonstrate a feasible approach for analog matrix multiplication.
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/95c950a5eea5402c9ba88b7eef5a5b8c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|