Optimizing Regenerative Braking: A Variational Calculus Approach

We begin by analyzing, using basic physics considerations, under what conditions it becomes energetically favorable to use aggressive regenerative braking to reach a lower speed over “coasting” where one relies solely on air drag to slow down. We then proceed to reformulate the question as an optimi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: L. Q. English, A. Mareno, Xuan-Lin Chen
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/95ebce73c3f84dc3bfb341bda855cf9e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:95ebce73c3f84dc3bfb341bda855cf9e
record_format dspace
spelling oai:doaj.org-article:95ebce73c3f84dc3bfb341bda855cf9e2021-11-22T01:10:46ZOptimizing Regenerative Braking: A Variational Calculus Approach1563-514710.1155/2021/8002130https://doaj.org/article/95ebce73c3f84dc3bfb341bda855cf9e2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/8002130https://doaj.org/toc/1563-5147We begin by analyzing, using basic physics considerations, under what conditions it becomes energetically favorable to use aggressive regenerative braking to reach a lower speed over “coasting” where one relies solely on air drag to slow down. We then proceed to reformulate the question as an optimization problem to find the velocity profile that maximizes battery charge. Making a simplifying assumption on battery-charging efficiency, we express the recovered energy as an integral quantity, and we solve the associated Euler–Lagrange equation to find the optimal braking curves that maximize this quantity in the framework of variational calculus. Using Lagrange multipliers, we also explore the effect of adding a fixed-displacement constraint.L. Q. EnglishA. MarenoXuan-Lin ChenHindawi LimitedarticleEngineering (General). Civil engineering (General)TA1-2040MathematicsQA1-939ENMathematical Problems in Engineering, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Engineering (General). Civil engineering (General)
TA1-2040
Mathematics
QA1-939
spellingShingle Engineering (General). Civil engineering (General)
TA1-2040
Mathematics
QA1-939
L. Q. English
A. Mareno
Xuan-Lin Chen
Optimizing Regenerative Braking: A Variational Calculus Approach
description We begin by analyzing, using basic physics considerations, under what conditions it becomes energetically favorable to use aggressive regenerative braking to reach a lower speed over “coasting” where one relies solely on air drag to slow down. We then proceed to reformulate the question as an optimization problem to find the velocity profile that maximizes battery charge. Making a simplifying assumption on battery-charging efficiency, we express the recovered energy as an integral quantity, and we solve the associated Euler–Lagrange equation to find the optimal braking curves that maximize this quantity in the framework of variational calculus. Using Lagrange multipliers, we also explore the effect of adding a fixed-displacement constraint.
format article
author L. Q. English
A. Mareno
Xuan-Lin Chen
author_facet L. Q. English
A. Mareno
Xuan-Lin Chen
author_sort L. Q. English
title Optimizing Regenerative Braking: A Variational Calculus Approach
title_short Optimizing Regenerative Braking: A Variational Calculus Approach
title_full Optimizing Regenerative Braking: A Variational Calculus Approach
title_fullStr Optimizing Regenerative Braking: A Variational Calculus Approach
title_full_unstemmed Optimizing Regenerative Braking: A Variational Calculus Approach
title_sort optimizing regenerative braking: a variational calculus approach
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/95ebce73c3f84dc3bfb341bda855cf9e
work_keys_str_mv AT lqenglish optimizingregenerativebrakingavariationalcalculusapproach
AT amareno optimizingregenerativebrakingavariationalcalculusapproach
AT xuanlinchen optimizingregenerativebrakingavariationalcalculusapproach
_version_ 1718418356535558144