Uncovering the effects of interface-induced ordering of liquid on crystal growth using machine learning

Crystallization is a challenging process to model quantitatively. Here the authors use machine learning and atomistic simulations together to uncover the role of the liquid structure on the process of crystallization and derive a predictive kinetic model of crystal growth.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Rodrigo Freitas, Evan J. Reed
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/964c406f580d4fc48ff08ec6be350803
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!