Uncovering the effects of interface-induced ordering of liquid on crystal growth using machine learning
Crystallization is a challenging process to model quantitatively. Here the authors use machine learning and atomistic simulations together to uncover the role of the liquid structure on the process of crystallization and derive a predictive kinetic model of crystal growth.
Enregistré dans:
Auteurs principaux: | , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/964c406f580d4fc48ff08ec6be350803 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|