Uncovering the effects of interface-induced ordering of liquid on crystal growth using machine learning
Crystallization is a challenging process to model quantitatively. Here the authors use machine learning and atomistic simulations together to uncover the role of the liquid structure on the process of crystallization and derive a predictive kinetic model of crystal growth.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/964c406f580d4fc48ff08ec6be350803 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Crystallization is a challenging process to model quantitatively. Here the authors use machine learning and atomistic simulations together to uncover the role of the liquid structure on the process of crystallization and derive a predictive kinetic model of crystal growth. |
---|