Uncovering the effects of interface-induced ordering of liquid on crystal growth using machine learning
Crystallization is a challenging process to model quantitatively. Here the authors use machine learning and atomistic simulations together to uncover the role of the liquid structure on the process of crystallization and derive a predictive kinetic model of crystal growth.
Guardado en:
Autores principales: | Rodrigo Freitas, Evan J. Reed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/964c406f580d4fc48ff08ec6be350803 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface
por: Wenda Wang, et al.
Publicado: (2016) -
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
por: M. Shuai, et al.
Publicado: (2016) -
Machine learning uncovers cell identity regulator by histone code
por: Bo Xia, et al.
Publicado: (2020) -
Tailoring atomic layer growth at the liquid-metal interface
por: Hai Cao, et al.
Publicado: (2018) -
Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome
por: Kevin Rychel, et al.
Publicado: (2020)