Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
The study of disease modules facilitates insight into complex diseases, but their identification relies on knowledge of molecular networks. Here, the authors show that disease modules and genes can also be discovered in deep autoencoder representations of large human gene expression datasets.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96fd96e94588460582e8f7d08f364317 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|