Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder

The study of disease modules facilitates insight into complex diseases, but their identification relies on knowledge of molecular networks. Here, the authors show that disease modules and genes can also be discovered in deep autoencoder representations of large human gene expression datasets.

Guardado en:
Detalles Bibliográficos
Autores principales: Sanjiv K. Dwivedi, Andreas Tjärnberg, Jesper Tegnér, Mika Gustafsson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/96fd96e94588460582e8f7d08f364317
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:96fd96e94588460582e8f7d08f364317
record_format dspace
spelling oai:doaj.org-article:96fd96e94588460582e8f7d08f3643172021-12-02T15:39:23ZDeriving disease modules from the compressed transcriptional space embedded in a deep autoencoder10.1038/s41467-020-14666-62041-1723https://doaj.org/article/96fd96e94588460582e8f7d08f3643172020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-14666-6https://doaj.org/toc/2041-1723The study of disease modules facilitates insight into complex diseases, but their identification relies on knowledge of molecular networks. Here, the authors show that disease modules and genes can also be discovered in deep autoencoder representations of large human gene expression datasets.Sanjiv K. DwivediAndreas TjärnbergJesper TegnérMika GustafssonNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sanjiv K. Dwivedi
Andreas Tjärnberg
Jesper Tegnér
Mika Gustafsson
Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
description The study of disease modules facilitates insight into complex diseases, but their identification relies on knowledge of molecular networks. Here, the authors show that disease modules and genes can also be discovered in deep autoencoder representations of large human gene expression datasets.
format article
author Sanjiv K. Dwivedi
Andreas Tjärnberg
Jesper Tegnér
Mika Gustafsson
author_facet Sanjiv K. Dwivedi
Andreas Tjärnberg
Jesper Tegnér
Mika Gustafsson
author_sort Sanjiv K. Dwivedi
title Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
title_short Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
title_full Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
title_fullStr Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
title_full_unstemmed Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
title_sort deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/96fd96e94588460582e8f7d08f364317
work_keys_str_mv AT sanjivkdwivedi derivingdiseasemodulesfromthecompressedtranscriptionalspaceembeddedinadeepautoencoder
AT andreastjarnberg derivingdiseasemodulesfromthecompressedtranscriptionalspaceembeddedinadeepautoencoder
AT jespertegner derivingdiseasemodulesfromthecompressedtranscriptionalspaceembeddedinadeepautoencoder
AT mikagustafsson derivingdiseasemodulesfromthecompressedtranscriptionalspaceembeddedinadeepautoencoder
_version_ 1718385947227193344