Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
The study of disease modules facilitates insight into complex diseases, but their identification relies on knowledge of molecular networks. Here, the authors show that disease modules and genes can also be discovered in deep autoencoder representations of large human gene expression datasets.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96fd96e94588460582e8f7d08f364317 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:96fd96e94588460582e8f7d08f364317 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:96fd96e94588460582e8f7d08f3643172021-12-02T15:39:23ZDeriving disease modules from the compressed transcriptional space embedded in a deep autoencoder10.1038/s41467-020-14666-62041-1723https://doaj.org/article/96fd96e94588460582e8f7d08f3643172020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-14666-6https://doaj.org/toc/2041-1723The study of disease modules facilitates insight into complex diseases, but their identification relies on knowledge of molecular networks. Here, the authors show that disease modules and genes can also be discovered in deep autoencoder representations of large human gene expression datasets.Sanjiv K. DwivediAndreas TjärnbergJesper TegnérMika GustafssonNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Sanjiv K. Dwivedi Andreas Tjärnberg Jesper Tegnér Mika Gustafsson Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder |
description |
The study of disease modules facilitates insight into complex diseases, but their identification relies on knowledge of molecular networks. Here, the authors show that disease modules and genes can also be discovered in deep autoencoder representations of large human gene expression datasets. |
format |
article |
author |
Sanjiv K. Dwivedi Andreas Tjärnberg Jesper Tegnér Mika Gustafsson |
author_facet |
Sanjiv K. Dwivedi Andreas Tjärnberg Jesper Tegnér Mika Gustafsson |
author_sort |
Sanjiv K. Dwivedi |
title |
Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder |
title_short |
Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder |
title_full |
Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder |
title_fullStr |
Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder |
title_full_unstemmed |
Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder |
title_sort |
deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/96fd96e94588460582e8f7d08f364317 |
work_keys_str_mv |
AT sanjivkdwivedi derivingdiseasemodulesfromthecompressedtranscriptionalspaceembeddedinadeepautoencoder AT andreastjarnberg derivingdiseasemodulesfromthecompressedtranscriptionalspaceembeddedinadeepautoencoder AT jespertegner derivingdiseasemodulesfromthecompressedtranscriptionalspaceembeddedinadeepautoencoder AT mikagustafsson derivingdiseasemodulesfromthecompressedtranscriptionalspaceembeddedinadeepautoencoder |
_version_ |
1718385947227193344 |