Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
The study of disease modules facilitates insight into complex diseases, but their identification relies on knowledge of molecular networks. Here, the authors show that disease modules and genes can also be discovered in deep autoencoder representations of large human gene expression datasets.
Guardado en:
Autores principales: | Sanjiv K. Dwivedi, Andreas Tjärnberg, Jesper Tegnér, Mika Gustafsson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/96fd96e94588460582e8f7d08f364317 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explore Protein Conformational Space With Variational Autoencoder
por: Hao Tian, et al.
Publicado: (2021) -
A DEEP AUTOENCODER-BASED REPRESENTATION FOR ARABIC TEXT CATEGORIZATION
por: Fatima-Zahra El-Alami, et al.
Publicado: (2020) -
DeepCellState: An autoencoder-based framework for predicting cell type specific transcriptional states induced by drug treatment.
por: Ramzan Umarov, et al.
Publicado: (2021) -
Searching for pneumothorax in x-ray images using autoencoded deep features
por: Antonio Sze-To, et al.
Publicado: (2021) -
Single-cell RNA-seq denoising using a deep count autoencoder
por: Gökcen Eraslan, et al.
Publicado: (2019)