A biochemically-interpretable machine learning classifier for microbial GWAS

Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical ef...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Erol S. Kavvas, Laurence Yang, Jonathan M. Monk, David Heckmann, Bernhard O. Palsson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/975d3eec652849ec8a3f9bfe2f5ad9c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!