A biochemically-interpretable machine learning classifier for microbial GWAS
Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical ef...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/975d3eec652849ec8a3f9bfe2f5ad9c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:975d3eec652849ec8a3f9bfe2f5ad9c0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:975d3eec652849ec8a3f9bfe2f5ad9c02021-12-02T15:45:14ZA biochemically-interpretable machine learning classifier for microbial GWAS10.1038/s41467-020-16310-92041-1723https://doaj.org/article/975d3eec652849ec8a3f9bfe2f5ad9c02020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16310-9https://doaj.org/toc/2041-1723Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical effects of alleles.Erol S. KavvasLaurence YangJonathan M. MonkDavid HeckmannBernhard O. PalssonNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Erol S. Kavvas Laurence Yang Jonathan M. Monk David Heckmann Bernhard O. Palsson A biochemically-interpretable machine learning classifier for microbial GWAS |
description |
Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical effects of alleles. |
format |
article |
author |
Erol S. Kavvas Laurence Yang Jonathan M. Monk David Heckmann Bernhard O. Palsson |
author_facet |
Erol S. Kavvas Laurence Yang Jonathan M. Monk David Heckmann Bernhard O. Palsson |
author_sort |
Erol S. Kavvas |
title |
A biochemically-interpretable machine learning classifier for microbial GWAS |
title_short |
A biochemically-interpretable machine learning classifier for microbial GWAS |
title_full |
A biochemically-interpretable machine learning classifier for microbial GWAS |
title_fullStr |
A biochemically-interpretable machine learning classifier for microbial GWAS |
title_full_unstemmed |
A biochemically-interpretable machine learning classifier for microbial GWAS |
title_sort |
biochemically-interpretable machine learning classifier for microbial gwas |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/975d3eec652849ec8a3f9bfe2f5ad9c0 |
work_keys_str_mv |
AT erolskavvas abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas AT laurenceyang abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas AT jonathanmmonk abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas AT davidheckmann abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas AT bernhardopalsson abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas AT erolskavvas biochemicallyinterpretablemachinelearningclassifierformicrobialgwas AT laurenceyang biochemicallyinterpretablemachinelearningclassifierformicrobialgwas AT jonathanmmonk biochemicallyinterpretablemachinelearningclassifierformicrobialgwas AT davidheckmann biochemicallyinterpretablemachinelearningclassifierformicrobialgwas AT bernhardopalsson biochemicallyinterpretablemachinelearningclassifierformicrobialgwas |
_version_ |
1718385765603344384 |