A biochemically-interpretable machine learning classifier for microbial GWAS

Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical ef...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Erol S. Kavvas, Laurence Yang, Jonathan M. Monk, David Heckmann, Bernhard O. Palsson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/975d3eec652849ec8a3f9bfe2f5ad9c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:975d3eec652849ec8a3f9bfe2f5ad9c0
record_format dspace
spelling oai:doaj.org-article:975d3eec652849ec8a3f9bfe2f5ad9c02021-12-02T15:45:14ZA biochemically-interpretable machine learning classifier for microbial GWAS10.1038/s41467-020-16310-92041-1723https://doaj.org/article/975d3eec652849ec8a3f9bfe2f5ad9c02020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16310-9https://doaj.org/toc/2041-1723Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical effects of alleles.Erol S. KavvasLaurence YangJonathan M. MonkDavid HeckmannBernhard O. PalssonNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Erol S. Kavvas
Laurence Yang
Jonathan M. Monk
David Heckmann
Bernhard O. Palsson
A biochemically-interpretable machine learning classifier for microbial GWAS
description Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical effects of alleles.
format article
author Erol S. Kavvas
Laurence Yang
Jonathan M. Monk
David Heckmann
Bernhard O. Palsson
author_facet Erol S. Kavvas
Laurence Yang
Jonathan M. Monk
David Heckmann
Bernhard O. Palsson
author_sort Erol S. Kavvas
title A biochemically-interpretable machine learning classifier for microbial GWAS
title_short A biochemically-interpretable machine learning classifier for microbial GWAS
title_full A biochemically-interpretable machine learning classifier for microbial GWAS
title_fullStr A biochemically-interpretable machine learning classifier for microbial GWAS
title_full_unstemmed A biochemically-interpretable machine learning classifier for microbial GWAS
title_sort biochemically-interpretable machine learning classifier for microbial gwas
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/975d3eec652849ec8a3f9bfe2f5ad9c0
work_keys_str_mv AT erolskavvas abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT laurenceyang abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT jonathanmmonk abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT davidheckmann abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT bernhardopalsson abiochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT erolskavvas biochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT laurenceyang biochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT jonathanmmonk biochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT davidheckmann biochemicallyinterpretablemachinelearningclassifierformicrobialgwas
AT bernhardopalsson biochemicallyinterpretablemachinelearningclassifierformicrobialgwas
_version_ 1718385765603344384