A biochemically-interpretable machine learning classifier for microbial GWAS
Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical ef...
Guardado en:
Autores principales: | Erol S. Kavvas, Laurence Yang, Jonathan M. Monk, David Heckmann, Bernhard O. Palsson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/975d3eec652849ec8a3f9bfe2f5ad9c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance
por: Erol S. Kavvas, et al.
Publicado: (2018) -
Systems Biology and Pangenome of <italic toggle="yes">Salmonella</italic> O-Antigens
por: Yara Seif, et al.
Publicado: (2019) -
Evaluation of the machine learning classifier in wafer defects classification
por: Jessnor Arif Mat Jizat, et al.
Publicado: (2021) -
GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds
por: Marawan Ahmed, et al.
Publicado: (2021) -
Comparison of Machine Learning Classifiers for Reducing Fitness Evaluations of Structural Optimization
por: Tran-Hieu Nguyen, et al.
Publicado: (2021)