A biochemically-interpretable machine learning classifier for microbial GWAS

Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical ef...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Erol S. Kavvas, Laurence Yang, Jonathan M. Monk, David Heckmann, Bernhard O. Palsson
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/975d3eec652849ec8a3f9bfe2f5ad9c0
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!