Dirty engineering data-driven inverse prediction machine learning model

Abstract Most data-driven machine learning (ML) approaches established in metallurgy research fields are focused on a build-up of reliable quantitative models that predict a material property from a given set of material conditions. In general, the input feature dimension (the number of material con...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jin-Woong Lee, Woon Bae Park, Byung Do Lee, Seonghwan Kim, Nam Hoon Goo, Kee-Sun Sohn
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/97f45af18b5640c5a76a5470b7e82b31
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!